Introduction: Distal Cholangiocarcinoma (dCCA) represents a challenge in hepatobiliary oncology, that requires nuanced post -resection prognostic modeling. Conventional staging criteria may oversimplify dCCA complexities, prompting the exploration of novel prognostic factors and methodologies, including machine learning algorithms. This study aims to develop a machine learning predictive model for recurrence after resected dCCA. Material and methods: This retrospective multicentric observational study included patients with dCCA from 13 international centers who underwent curative pancreaticoduodenectomy (PD). A LASSO -regularized Cox regression model was used to feature selection, examine the path of the coefficient and create a model to predict recurrence. Internal and external validation and model performance were assessed using the C -index score. Additionally, a web application was developed to enhance the clinical use of the algorithm. Results: Among 654 patients, LNR (Lymph Node Ratio) 15, neural invasion, N stage, surgical radicality, and differentiation grade emerged as significant predictors of disease -free survival (DFS). The model showed the best discrimination capacity with a C -index value of 0.8 (CI 95 %, 0.77%-0.86 %) and highlighted LNR15 as the most influential factor. Internal and external validations showed the model's robustness and discriminative ability with an Area Under the Curve of 92.4 % (95 % CI, 88.2%-94.4 %) and 91.5 % (95 % CI, 88.4%-93.5 %), respectively. The predictive model is available at https://imim.shinyapps.io/LassoCholangioca/. Conclusions: This study pioneers the integration of machine learning into prognostic modeling for dCCA, yielding a robust predictive model for DFS following PD. The tool can provide information to both patients and healthcare providers, enhancing tailored treatments and follow-up.

A machine learning predictive model for recurrence of resected distal cholangiocarcinoma: Development and validation of predictive model using artificial intelligence

Podda, Mauro;Pisanu, Adolfo;
2024-01-01

Abstract

Introduction: Distal Cholangiocarcinoma (dCCA) represents a challenge in hepatobiliary oncology, that requires nuanced post -resection prognostic modeling. Conventional staging criteria may oversimplify dCCA complexities, prompting the exploration of novel prognostic factors and methodologies, including machine learning algorithms. This study aims to develop a machine learning predictive model for recurrence after resected dCCA. Material and methods: This retrospective multicentric observational study included patients with dCCA from 13 international centers who underwent curative pancreaticoduodenectomy (PD). A LASSO -regularized Cox regression model was used to feature selection, examine the path of the coefficient and create a model to predict recurrence. Internal and external validation and model performance were assessed using the C -index score. Additionally, a web application was developed to enhance the clinical use of the algorithm. Results: Among 654 patients, LNR (Lymph Node Ratio) 15, neural invasion, N stage, surgical radicality, and differentiation grade emerged as significant predictors of disease -free survival (DFS). The model showed the best discrimination capacity with a C -index value of 0.8 (CI 95 %, 0.77%-0.86 %) and highlighted LNR15 as the most influential factor. Internal and external validations showed the model's robustness and discriminative ability with an Area Under the Curve of 92.4 % (95 % CI, 88.2%-94.4 %) and 91.5 % (95 % CI, 88.4%-93.5 %), respectively. The predictive model is available at https://imim.shinyapps.io/LassoCholangioca/. Conclusions: This study pioneers the integration of machine learning into prognostic modeling for dCCA, yielding a robust predictive model for DFS following PD. The tool can provide information to both patients and healthcare providers, enhancing tailored treatments and follow-up.
2024
Distal cholangiocarcinoma
Lymph node ratio
Machine learning
Pancreatoduodenectomy
Prognosis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/426462
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact