Small molecule/polymer semiconductor blends are promising solutions for the development of high-performing organic electronics. They are able to combine ease in solution processability, thanks to the tunable rheological properties of polymeric inks, with outstanding charge transport properties thanks to high crystalline phases of small molecules. However, because of charge injection issues, so far such good performances are only demonstrated in ad-hoc device architectures, not suited for high-frequency applications, where transistor dimensions require downscaling. Here, the successful integration of the most performing blend reported to date, based on 2,7-dioctyl[1] benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and poly(indacenodithiophene-co-benzothiadiazole) (C16IDT-BT), in OFETs characterized by channel and overlap lengths equal to 1.3 and 1.9 µm, respectively, is demonstrated, enabling a transition frequency of 23 MHz at -8 V. Two key aspects allowed such result: molecular doping, leading to width-normalized contact resistance of only 260 Ωcm, allowing to retain an apparent field-effect mobility as high as 3 cm2/(Vs) in short channel devices, and the implementation of a high capacitance dielectric stack, enabling the reduction of operating voltages below 10 V and the overcoming of self-heating issues. These results represent a fundamental step for the future development of low-cost and high-speed printed electronics for IoT applications.

Downscaling of Organic Field-Effect Transistors based on High-Mobility Semiconducting Blends for High-Frequency Operation

Viola F. A.;
2024-01-01

Abstract

Small molecule/polymer semiconductor blends are promising solutions for the development of high-performing organic electronics. They are able to combine ease in solution processability, thanks to the tunable rheological properties of polymeric inks, with outstanding charge transport properties thanks to high crystalline phases of small molecules. However, because of charge injection issues, so far such good performances are only demonstrated in ad-hoc device architectures, not suited for high-frequency applications, where transistor dimensions require downscaling. Here, the successful integration of the most performing blend reported to date, based on 2,7-dioctyl[1] benzothieno[3,2-b][1]benzothiophene (C8-BTBT) and poly(indacenodithiophene-co-benzothiadiazole) (C16IDT-BT), in OFETs characterized by channel and overlap lengths equal to 1.3 and 1.9 µm, respectively, is demonstrated, enabling a transition frequency of 23 MHz at -8 V. Two key aspects allowed such result: molecular doping, leading to width-normalized contact resistance of only 260 Ωcm, allowing to retain an apparent field-effect mobility as high as 3 cm2/(Vs) in short channel devices, and the implementation of a high capacitance dielectric stack, enabling the reduction of operating voltages below 10 V and the overcoming of self-heating issues. These results represent a fundamental step for the future development of low-cost and high-speed printed electronics for IoT applications.
2024
doping; high‐frequency transistors; organic electronics; organic semiconductors; organic transistors
File in questo prodotto:
File Dimensione Formato  
Small Methods - 2024 - Losi - Downscaling of Organic Fieldâ Effect Transistors based on Highâ Mobility Semiconducting Blends.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 3.23 MB
Formato Adobe PDF
3.23 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/426730
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact