This paper overviews the development of a framework for the optimization of black-box mixed-integer functions subject to bound constraints. Our methodology is based on the use of tailored surrogate approximations of the unknown objective function, in combination with a trust-region method. To construct suitable model approximations, we assume that the unknown objective is locally quadratic, and we prove that this leads to fully-linear models in restricted discrete neighborhoods. We show that the proposed algorithm converges to a first-order mixed-integer stationary point according to several natural definitions of mixed-integer stationarity, depending on the structure of the objective function. We present numerical results to illustrate the computational performance of different implementations of this methodology in comparison with the state-of-the-art derivative-free solver NOMAD.

A trust-region framework for derivative-free mixed-integer optimization

Wolfler Calvo R.
2024-01-01

Abstract

This paper overviews the development of a framework for the optimization of black-box mixed-integer functions subject to bound constraints. Our methodology is based on the use of tailored surrogate approximations of the unknown objective function, in combination with a trust-region method. To construct suitable model approximations, we assume that the unknown objective is locally quadratic, and we prove that this leads to fully-linear models in restricted discrete neighborhoods. We show that the proposed algorithm converges to a first-order mixed-integer stationary point according to several natural definitions of mixed-integer stationarity, depending on the structure of the objective function. We present numerical results to illustrate the computational performance of different implementations of this methodology in comparison with the state-of-the-art derivative-free solver NOMAD.
2024
Derivative-free optimization
Mixed-integer programming
Nonlinear programming
Trust-region methods
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/434005
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact