We consider the problem of computed tomography (CT). This ill-posed inverse problem arises when one wishes to investigate the internal structure of an object with a non-invasive and non-destructive technique. This problem is severely ill-conditioned, meaning it has infinite solutions and is extremely sensitive to perturbations in the collected data. This sensitivity produces the well-known semi-convergence phenomenon if iterative methods are used to solve it. In this work, we propose a multigrid approach to mitigate this instability and produce fast, accurate, and stable algorithms starting from unstable ones. We consider, in particular, symmetric Krylov methods, like lsqr, as smoother, and a symmetric projection of the coarse grid operator. However, our approach can be extended to any iterative method. Several numerical examples show the performance of our proposal.
Multigrid Methods for Computed Tomography
Buccini, Alessandro;Donatelli, Marco
;Ratto, Marco
2025-01-01
Abstract
We consider the problem of computed tomography (CT). This ill-posed inverse problem arises when one wishes to investigate the internal structure of an object with a non-invasive and non-destructive technique. This problem is severely ill-conditioned, meaning it has infinite solutions and is extremely sensitive to perturbations in the collected data. This sensitivity produces the well-known semi-convergence phenomenon if iterative methods are used to solve it. In this work, we propose a multigrid approach to mitigate this instability and produce fast, accurate, and stable algorithms starting from unstable ones. We consider, in particular, symmetric Krylov methods, like lsqr, as smoother, and a symmetric projection of the coarse grid operator. However, our approach can be extended to any iterative method. Several numerical examples show the performance of our proposal.File | Dimensione | Formato | |
---|---|---|---|
MGM_CT.pdf
accesso aperto
Tipologia:
versione editoriale (VoR)
Dimensione
1.38 MB
Formato
Adobe PDF
|
1.38 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.