Computational design of novel proteins with well-defined functions is an ongoing topic in computational biology. In this work, we generated and optimized a new synthetic fusion protein using an evolutionary approach. The optimization was guided by directed evolution based on hydrophobicity scores, molecular weight, and secondary structure predictions. Several methods were used to refine the models built from the resulting sequences. We have successfully combined two unrelated naturally occurring binding sites, the immunoglobin Fc-binding site of the Z domain and the DNA-binding motif of MyoD bHLH, into a novel stable protein.

Computational Design of a DNA- and Fc-Binding Fusion Protein

ARMANO, GIULIANO;
2011-01-01

Abstract

Computational design of novel proteins with well-defined functions is an ongoing topic in computational biology. In this work, we generated and optimized a new synthetic fusion protein using an evolutionary approach. The optimization was guided by directed evolution based on hydrophobicity scores, molecular weight, and secondary structure predictions. Several methods were used to refine the models built from the resulting sequences. We have successfully combined two unrelated naturally occurring binding sites, the immunoglobin Fc-binding site of the Z domain and the DNA-binding motif of MyoD bHLH, into a novel stable protein.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/44345
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact