We study how interactions affect the quantum reflection of Bose-Einstein condensates. A patterned silicon surface with a square array of pillars resulted in high reflection probabilities. For incident velocities greater than 2.5 mm/s, our observations agreed with single-particle theory. At velocities below 2.5 mm/s, the measured reflection probability saturated near 60% rather than increasing towards unity as predicted by the accepted theoretical model. We extend the theory of quantum reflection to account for the mean-field interactions of a condensate which suppresses quantum reflection at low velocity. The reflected condensates show collective excitations as recently predicted.

Low velocity quantum reflection of Bose-Einstein condensates

SABA, MICHELE;
2006-01-01

Abstract

We study how interactions affect the quantum reflection of Bose-Einstein condensates. A patterned silicon surface with a square array of pillars resulted in high reflection probabilities. For incident velocities greater than 2.5 mm/s, our observations agreed with single-particle theory. At velocities below 2.5 mm/s, the measured reflection probability saturated near 60% rather than increasing towards unity as predicted by the accepted theoretical model. We extend the theory of quantum reflection to account for the mean-field interactions of a condensate which suppresses quantum reflection at low velocity. The reflected condensates show collective excitations as recently predicted.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/44602
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 129
  • ???jsp.display-item.citation.isi??? 125
social impact