An investigation of the parametric amplification and its coherent control in a semiconductor microcavity is presented. The time and angle resolved pump and probe experiments show that several picoseconds after pumping the polaritons are still coherent and parametric scattering is still going on. The experimental data concerning the time integrated measurements are in qualitative agreement with the numerical data obtained from a relatively simple theoretical model based on three polarisation components, pump, probe, and idler. As for the dynamics of parametric amplification in real time, the measurements reveal that often stimulation is considerably delayed with respect to the arrival of pump and probe. Even though the observed dynamics is complex, our simple theoretical model permits to reproduce several of the experimental features. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Non-linear dynamical effects in semiconductor microcavities
SABA, MICHELE;
2005-01-01
Abstract
An investigation of the parametric amplification and its coherent control in a semiconductor microcavity is presented. The time and angle resolved pump and probe experiments show that several picoseconds after pumping the polaritons are still coherent and parametric scattering is still going on. The experimental data concerning the time integrated measurements are in qualitative agreement with the numerical data obtained from a relatively simple theoretical model based on three polarisation components, pump, probe, and idler. As for the dynamics of parametric amplification in real time, the measurements reveal that often stimulation is considerably delayed with respect to the arrival of pump and probe. Even though the observed dynamics is complex, our simple theoretical model permits to reproduce several of the experimental features. (c) 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.