Spatially and temporally discontinuous canopy height footprints collected by NASA's GEDI (Global Ecosystem Dynamics Investigation) mission are accessible on the Google Earth Engine (GEE) cloud computing platform. This study introduces an open-source, user-friendly, code-free GEE web application called Canopy Height Mapper (CH-GEE), available at https://ee-calvites1990.projects.earthengine.app/view/ch-gee, which automatically generates (10 m) high-resolution canopy height maps for a specific area by integrating GEDI with multi-source remote sensing data: Copernicus and topographical data from the GEE data catalogue. CH-GEE generates local-to-country scale calibrated canopy height maps worldwide using machine learning algorithms and leveraging the GEE platform's big data and cloud computing capabilities. CH-GEE allows customization of geographic area, algorithms and time windows for GEDI and predictors. Canopy heights generated by CH-GEE were validated using the Italian National Forest Inventory across 110,000 km2 at multiple scales (Country-based R-squared = 0.89, RMSE = 17%). CH-GEE's accuracy and scalability make it suitable for forest monitoring.

Canopy height Mapper: A google earth engine application for predicting global canopy heights combining GEDI with multi-source data

Marignani, Michela;Bazzato, Erika
Ultimo
Methodology
2025-01-01

Abstract

Spatially and temporally discontinuous canopy height footprints collected by NASA's GEDI (Global Ecosystem Dynamics Investigation) mission are accessible on the Google Earth Engine (GEE) cloud computing platform. This study introduces an open-source, user-friendly, code-free GEE web application called Canopy Height Mapper (CH-GEE), available at https://ee-calvites1990.projects.earthengine.app/view/ch-gee, which automatically generates (10 m) high-resolution canopy height maps for a specific area by integrating GEDI with multi-source remote sensing data: Copernicus and topographical data from the GEE data catalogue. CH-GEE generates local-to-country scale calibrated canopy height maps worldwide using machine learning algorithms and leveraging the GEE platform's big data and cloud computing capabilities. CH-GEE allows customization of geographic area, algorithms and time windows for GEDI and predictors. Canopy heights generated by CH-GEE were validated using the Italian National Forest Inventory across 110,000 km2 at multiple scales (Country-based R-squared = 0.89, RMSE = 17%). CH-GEE's accuracy and scalability make it suitable for forest monitoring.
2025
Forest monitoring
GEE web app
Local-to-country calibrated model
Machine learning
Remote sensing
Sentinel
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1364815224003293-main.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 8.72 MB
Formato Adobe PDF
8.72 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/446166
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact