A novel ratiometric fluorescent platform, composed of a rodamine derivative and dansyl moiety, was designed and synthesised as a prototype sensor capable of responding to proton concentration. It is well known that, under neutral or basic conditions, rhodamine derivatives in their spirolactam form do not absorb or emit in the visible range. However, metal or proton ions can induce spirolactam ring opening, resulting in visible absorption and strong fluorescence emission. Although many rhodamine derivatives have been developed to detect metal ions or pH changes, the sensing mechanism related to spirolactam ring opening remains not fully understood. To address this, the hybrid platform described in this work was investigated across a wide pH range, particularly under high proton concentration, to study and clarify the proton-mediated ring opening mechanism of the rhodamine spirolactam. This investigation combined spectrophotometric and potentiometric measurements, supported by DFT calculations.

An Integrated Theoretical and Spectroscopic Analysis of the pH-Triggered Ring-Opening Mechanism in a Prototype Rhodamine-Based Fluorescent Dye

Mariangela Oggianu
Primo
;
Enzo Cadoni
Secondo
;
Alessandra Garau;Francesco Quochi;Carla Cannas;Tiziana Pivetta
Penultimo
;
Maria Laura Mercuri
Ultimo
2025-01-01

Abstract

A novel ratiometric fluorescent platform, composed of a rodamine derivative and dansyl moiety, was designed and synthesised as a prototype sensor capable of responding to proton concentration. It is well known that, under neutral or basic conditions, rhodamine derivatives in their spirolactam form do not absorb or emit in the visible range. However, metal or proton ions can induce spirolactam ring opening, resulting in visible absorption and strong fluorescence emission. Although many rhodamine derivatives have been developed to detect metal ions or pH changes, the sensing mechanism related to spirolactam ring opening remains not fully understood. To address this, the hybrid platform described in this work was investigated across a wide pH range, particularly under high proton concentration, to study and clarify the proton-mediated ring opening mechanism of the rhodamine spirolactam. This investigation combined spectrophotometric and potentiometric measurements, supported by DFT calculations.
2025
protonation equilibria; pH monitoring; rhodamine derivatives; fluorescence sensor; spectrophotometric and spectrofluorimetric measurements
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/446891
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact