We defined a noncommutative algebra representation for quantum systems whose phase space is the cotangent bundle of the Lorentz group, and the noncommutative Fourier transform ensuring the unitary equivalence with the standard group representation. Our construction is from first principles in the sense that all structures are derived from the choice of quantization map for the classical system, the Duflo quantization map.

Noncommutative Fourier transform for the Lorentz group via the Duflo map

Rosati G
2019-01-01

Abstract

We defined a noncommutative algebra representation for quantum systems whose phase space is the cotangent bundle of the Lorentz group, and the noncommutative Fourier transform ensuring the unitary equivalence with the standard group representation. Our construction is from first principles in the sense that all structures are derived from the choice of quantization map for the classical system, the Duflo quantization map.
2019
Loop quantum gravity; Noncommutative field theories; Quantum gravity; Lorentz symmetry; Quantum group symmetries; Group theory; Noncommutative geometry; Path integrals
File in questo prodotto:
File Dimensione Formato  
NCfourier.pdf

accesso aperto

Descrizione: articolo online
Tipologia: versione editoriale (VoR)
Dimensione 449.9 kB
Formato Adobe PDF
449.9 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/447162
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact