We consider general relativistic homogeneous gravitational collapses for dust and radiation. We show that replacing the density profile with an effective density justified by some quantum gravity framework leads to the avoidance of the final singularity. The effective density acts on the collapsing cloud by introducing an isotropic pressure, which is negligible at the beginning of the collapse and becomes negative and dominant in the strong-field regime. Event horizons never form and therefore the outcome of the collapse is not a black hole, in the sense that there are no regions causally disconnected from future null infinity. Apparent horizons form when the mass of the object exceeds a critical value, disappear when the matter density approaches an upper bound and gravity becomes very weak (asymptotic-freedom regime), form again after the bounce as a consequence of the decrease in the matter density, and eventually disappear when the density becomes too low and the matter is radiated away. The possibility of detecting radiation coming from the high-density region of a collapsing astrophysical object in which classically there would be the creation of a singularity could open a new window to experimentally test theories of quantum gravity. © 2013 American Physical Society.

Non-singular quantum-inspired gravitational collapse

Modesto, Leonardo
2013-01-01

Abstract

We consider general relativistic homogeneous gravitational collapses for dust and radiation. We show that replacing the density profile with an effective density justified by some quantum gravity framework leads to the avoidance of the final singularity. The effective density acts on the collapsing cloud by introducing an isotropic pressure, which is negligible at the beginning of the collapse and becomes negative and dominant in the strong-field regime. Event horizons never form and therefore the outcome of the collapse is not a black hole, in the sense that there are no regions causally disconnected from future null infinity. Apparent horizons form when the mass of the object exceeds a critical value, disappear when the matter density approaches an upper bound and gravity becomes very weak (asymptotic-freedom regime), form again after the bounce as a consequence of the decrease in the matter density, and eventually disappear when the density becomes too low and the matter is radiated away. The possibility of detecting radiation coming from the high-density region of a collapsing astrophysical object in which classically there would be the creation of a singularity could open a new window to experimentally test theories of quantum gravity. © 2013 American Physical Society.
File in questo prodotto:
File Dimensione Formato  
Non-singular quantum-inspired gravitational collapse.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 334.46 kB
Formato Adobe PDF
334.46 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1305.4790v2.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 493.7 kB
Formato Adobe PDF
493.7 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/447512
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 127
  • ???jsp.display-item.citation.isi??? 128
social impact