Coronary plaque vulnerability, more than luminal stenosis, drives acute coronary syndromes. Optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography (CCTA) visualize plaque morphology in vivo, but manual interpretation is time-consuming and operator-dependent. We performed a narrative literature survey of artificial intelligence (AI) applications-focusing on machine learning (ML) architectures-for automated coronary plaque segmentation and risk characterization across OCT, IVUS, and CCTA. Recent ML models achieve expert-level lumen and plaque segmentation, reliably detecting features linked to vulnerability such as a lipid-rich necrotic core, calcification, positive remodelling, and a napkin-ring sign. Integrative radiomic and multimodal frameworks further improve prognostic stratification for major adverse cardiac events. Nonetheless, progress is constrained by small, single-centre datasets, heterogeneous validation metrics, and limited model interpretability. AI-enhanced plaque assessment offers rapid, reproducible, and comprehensive coronary imaging analysis. Future work should prioritize large multicentre repositories, explainable architectures, and prospective outcome-oriented validation to enable routine clinical adoption.

Machine Learning for Coronary Plaque Characterization: A Multimodal Review of OCT, IVUS, and CCTA

Pinna A.
Primo
Writing – Review & Editing
;
Balestrieri A.;Sanfilippo R.
Penultimo
;
Saba L.
Ultimo
Supervision
2025-01-01

Abstract

Coronary plaque vulnerability, more than luminal stenosis, drives acute coronary syndromes. Optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography (CCTA) visualize plaque morphology in vivo, but manual interpretation is time-consuming and operator-dependent. We performed a narrative literature survey of artificial intelligence (AI) applications-focusing on machine learning (ML) architectures-for automated coronary plaque segmentation and risk characterization across OCT, IVUS, and CCTA. Recent ML models achieve expert-level lumen and plaque segmentation, reliably detecting features linked to vulnerability such as a lipid-rich necrotic core, calcification, positive remodelling, and a napkin-ring sign. Integrative radiomic and multimodal frameworks further improve prognostic stratification for major adverse cardiac events. Nonetheless, progress is constrained by small, single-centre datasets, heterogeneous validation metrics, and limited model interpretability. AI-enhanced plaque assessment offers rapid, reproducible, and comprehensive coronary imaging analysis. Future work should prioritize large multicentre repositories, explainable architectures, and prospective outcome-oriented validation to enable routine clinical adoption.
2025
AI; CCTA; coronary plaque; DL; IVUS; ML; multimodal imaging; OCT; vulnerable plaque
File in questo prodotto:
File Dimensione Formato  
diagnostics-15-01822 (1).pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: versione editoriale (VoR)
Dimensione 2.3 MB
Formato Adobe PDF
2.3 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/456445
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact