Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation. This study evaluates biphoton pair generation and time-energy entanglement through spontaneous four-wave mixing in various nonlinear integrated photonic materials, including silicon nitride, lithium niobate, aluminum gallium arsenide, indium gallium phosphide, and gallium nitride. We demonstrate how geometric dispersion engineering facilitates phase-matching for each platform and reveals unexpected results, such as robust designs to fabrication variations and a Type-1 cross-polarized phase-matching condition for III-V materials that expands the operational wavelength range.

Visible-Telecom Entangled-Photon Pair Generation with Integrated Photonics: Guidelines and a Materials Comparison

Pintus, Paolo;
2025-01-01

Abstract

Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation. This study evaluates biphoton pair generation and time-energy entanglement through spontaneous four-wave mixing in various nonlinear integrated photonic materials, including silicon nitride, lithium niobate, aluminum gallium arsenide, indium gallium phosphide, and gallium nitride. We demonstrate how geometric dispersion engineering facilitates phase-matching for each platform and reveals unexpected results, such as robust designs to fabrication variations and a Type-1 cross-polarized phase-matching condition for III-V materials that expands the operational wavelength range.
2025
Entanglement
four-wave mixing
integrated photonics
microring resonators
nonlinear photonics
photon pairs
File in questo prodotto:
File Dimensione Formato  
2024_ACS Photonics_Visible-Telecom Entangled-Photon Pair Generation with Integrated Photonics.pdf

accesso aperto

Tipologia: versione editoriale (VoR)
Dimensione 3.99 MB
Formato Adobe PDF
3.99 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/463906
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact