We study a Dirichlet problem for an elliptic equation of resonant type involving a general nonlocal term. Using a result of Ricceri, we prove that the solution set for such equation has a positive topological dimension, and contains a nondegenerate connected component. In particular, the solution set has the cardinality of the continuum.

On the topological dimension of the solution set of a class of nonlocal elliptic problems

IANNIZZOTTO, ANTONIO
2013-01-01

Abstract

We study a Dirichlet problem for an elliptic equation of resonant type involving a general nonlocal term. Using a result of Ricceri, we prove that the solution set for such equation has a positive topological dimension, and contains a nondegenerate connected component. In particular, the solution set has the cardinality of the continuum.
2013
Nonlocal boundary value problems, Dimension theory
File in questo prodotto:
File Dimensione Formato  
Faraci-Iannizzotto-TMNA.pdf

Solo gestori archivio

Descrizione: Articolo
Tipologia: versione editoriale (VoR)
Dimensione 168.01 kB
Formato Adobe PDF
168.01 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/48797
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact