We consider a parametric nonlinear elliptic equation driven by the Dirichlet p-Laplacian. We study the existence, nonexistence and multiplicity of positive solutions as the parameter varies in the set of positive reals and the potential exhibits a p-superlinear growth, without satisfying the usual in such cases Ambrosetti–Rabinowitz condition. We prove a bifurcation-type result when the reaction has (p-1)-sublinear terms near zero (problem with concave and convex nonlinearities). We show that a similar bifurcation-type result is also true, if near zero the right hand side is (p-1)-linear.
Titolo: | Existence, nonexistence and multiplicity of positive solutions for parametric nonlinear elliptic equations | |
Autori: | ||
Data di pubblicazione: | 2014 | |
Rivista: | ||
Abstract: | We consider a parametric nonlinear elliptic equation driven by the Dirichlet p-Laplacian. We study the existence, nonexistence and multiplicity of positive solutions as the parameter varies in the set of positive reals and the potential exhibits a p-superlinear growth, without satisfying the usual in such cases Ambrosetti–Rabinowitz condition. We prove a bifurcation-type result when the reaction has (p-1)-sublinear terms near zero (problem with concave and convex nonlinearities). We show that a similar bifurcation-type result is also true, if near zero the right hand side is (p-1)-linear. | |
Handle: | http://hdl.handle.net/11584/48798 | |
Tipologia: | 1.1 Articolo in rivista |
File in questo prodotto:
File | Descrizione | Tipologia | Licenza | |
---|---|---|---|---|
Iannizzotto-Papageorgiou-OJM.pdf | Articolo principale | versione editoriale | Open Access Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.