We consider a difference equation involving the discrete p-Laplacian operator, depending on a positive real parameter lambda. We prove, under convenient assumptions, that for lambda big enough the equation admits at least one homoclinic constant sign solution in Z. Our method consists in two parts: first, we prove the existence of two Dirichlet-type solutions for the equation in the discrete interval [-n,n], for all n big enough; then, we show that such solutions converge to a homoclinic solution in Z, as n tends to infinity.

Existence of homoclinic constant sign solutions for a difference equation on the integers

IANNIZZOTTO, ANTONIO
2013-01-01

Abstract

We consider a difference equation involving the discrete p-Laplacian operator, depending on a positive real parameter lambda. We prove, under convenient assumptions, that for lambda big enough the equation admits at least one homoclinic constant sign solution in Z. Our method consists in two parts: first, we prove the existence of two Dirichlet-type solutions for the equation in the discrete interval [-n,n], for all n big enough; then, we show that such solutions converge to a homoclinic solution in Z, as n tends to infinity.
2013
Difference equations, Discrete p-Laplacian, Variational methods
File in questo prodotto:
File Dimensione Formato  
Cabada-Iannizzotto-AMC.pdf

Solo gestori archivio

Descrizione: Articolo
Tipologia: versione editoriale (VoR)
Dimensione 316.32 kB
Formato Adobe PDF
316.32 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/52255
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 5
social impact