The homogeneous Dirichlet problem for a partial differential inclusion involving the p-Laplace operator and depending on a parameter λ > 0 is investigated. The existence of three smooth solutions, a smallest positive, a biggest negative, and a nodal one, is obtained for any λ sufficiently large by combining variational methods with truncation techniques.

Positive, negative, and nodal solutions to elliptic differential inclusions depending on a parameter

IANNIZZOTTO, ANTONIO;
2013-01-01

Abstract

The homogeneous Dirichlet problem for a partial differential inclusion involving the p-Laplace operator and depending on a parameter λ > 0 is investigated. The existence of three smooth solutions, a smallest positive, a biggest negative, and a nodal one, is obtained for any λ sufficiently large by combining variational methods with truncation techniques.
Partial differential inclusion, p-Laplacian, Sign-changing solution, Non-smooth critical point theory, Maximum principle
File in questo prodotto:
File Dimensione Formato  
Iannizzotto-Marano-Motreanu-ANL.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: versione editoriale
Dimensione 128.45 kB
Formato Adobe PDF
128.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/52256
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 9
social impact