We prove that every contact metric (κ, μ) -space admits a canonical η-Einstein Sasakian or η-Einstein paraSasakian metric. An explicit expression for the curvature tensor fields of those metrics is given and we find the values of κ and μ for which such metrics are Sasaki-Einstein and paraSasaki-Einstein. Conversely, we prove that, under some natural assumptions, a K-contact or K-paracontact manifold foliated by two mutually orthogonal, totally geodesic Legendre foliations admits a contact metric (κ, μ) -structure. Furthermore, we apply the above results to the geometry of tangent sphere bundles and we discuss some geometric properties of (κ, μ) -spaces related to the existence of Einstein-Weyl and Lorentzian-Sasaki-Einstein structures.

Sasaki–Einstein and paraSasaki–Einstein metrics from (κ,μ)-structures

CAPPELLETTI MONTANO, BENIAMINO;
2013-01-01

Abstract

We prove that every contact metric (κ, μ) -space admits a canonical η-Einstein Sasakian or η-Einstein paraSasakian metric. An explicit expression for the curvature tensor fields of those metrics is given and we find the values of κ and μ for which such metrics are Sasaki-Einstein and paraSasaki-Einstein. Conversely, we prove that, under some natural assumptions, a K-contact or K-paracontact manifold foliated by two mutually orthogonal, totally geodesic Legendre foliations admits a contact metric (κ, μ) -structure. Furthermore, we apply the above results to the geometry of tangent sphere bundles and we discuss some geometric properties of (κ, μ) -spaces related to the existence of Einstein-Weyl and Lorentzian-Sasaki-Einstein structures.
File in questo prodotto:
File Dimensione Formato  
JGP2013.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 619.98 kB
Formato Adobe PDF
619.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/53372
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 35
social impact