Treatment-resistant major depressive disorder remains inadequately treated with currently available antidepressants. Opioid receptors (ORs) are involved in the pathophysiology of depression yet remain an untapped therapeutic intervention. The μ-δ OR heteromer represents a unique signaling complex with distinct properties compared with μ- and δ-OR homomers; however, its role in depression has not been characterized. As there are no ligands exclusively targeting the μ-δ heteromer, we devised a strategy to selectively antagonize the function of the μ-δOR complex using a specific interfering peptide derived from the δOR distal carboxyl tail, a sequence implicated in μ-δOR heteromerization. In vitro studies using a minigene expressing this peptide demonstrated a loss of the unique pharmacological and trafficking properties of δ-agonists at the μ-δ heteromer, with no effect on μ- or δ-OR homomers, and a dissociation of the μ-δOR complex. Intra-accumbens administration of the TAT-conjugated interfering peptide abolished the antidepressant-like and anxiolytic-like actions of the δ-agonist UFP-512 (H-Dmt-Tic-NH-CH(CH2-COOH)-Bid) measured in the forced swim test, novelty-induced hypophagia and elevated plus maze paradigms in rats. UFP-512's antidepressant-like and anxiolytic-like actions were abolished by pretreatment with either μOR or δOR antagonists. Overall, these findings demonstrate that the μ-δ heteromer may be a potential suitable therapeutic target for treatment-resistant depression and anxiety disorders.

Antidepressant-like and anxiolytic-like effects following activation of the mu-delta opioid receptor heteromer in the nucleus accumbens

BALBONI, GIANFRANCO;
2014-01-01

Abstract

Treatment-resistant major depressive disorder remains inadequately treated with currently available antidepressants. Opioid receptors (ORs) are involved in the pathophysiology of depression yet remain an untapped therapeutic intervention. The μ-δ OR heteromer represents a unique signaling complex with distinct properties compared with μ- and δ-OR homomers; however, its role in depression has not been characterized. As there are no ligands exclusively targeting the μ-δ heteromer, we devised a strategy to selectively antagonize the function of the μ-δOR complex using a specific interfering peptide derived from the δOR distal carboxyl tail, a sequence implicated in μ-δOR heteromerization. In vitro studies using a minigene expressing this peptide demonstrated a loss of the unique pharmacological and trafficking properties of δ-agonists at the μ-δ heteromer, with no effect on μ- or δ-OR homomers, and a dissociation of the μ-δOR complex. Intra-accumbens administration of the TAT-conjugated interfering peptide abolished the antidepressant-like and anxiolytic-like actions of the δ-agonist UFP-512 (H-Dmt-Tic-NH-CH(CH2-COOH)-Bid) measured in the forced swim test, novelty-induced hypophagia and elevated plus maze paradigms in rats. UFP-512's antidepressant-like and anxiolytic-like actions were abolished by pretreatment with either μOR or δOR antagonists. Overall, these findings demonstrate that the μ-δ heteromer may be a potential suitable therapeutic target for treatment-resistant depression and anxiety disorders.
2014
Anhedonia; Emotion; G-protein coupled receptor; Heterooligomer; Mood; Ventral striatum
File in questo prodotto:
File Dimensione Formato  
Mol Psy 2014.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 587.82 kB
Formato Adobe PDF
587.82 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/53680
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 30
social impact