The synthesis and the physico-chemical characterisation of a novel solid phase, designed for iron(III) sorption, are presented. The solid (indicated in the following as DFO-SAMMS) is made with a hydroxamate siderophore, the deferoxamine (DFO), covalently bound on a self-assembled monolayer on mesoporous silica (SAMMS). The data demonstrate that the DFO molecules are bound to the solid material, grafted on the surface and do not enter the silica pores. A new one-pot synthesis is presented in which DFO is dissolved in DMSO, and left to react with GPTMS with stirring overnight. In the same mixture, SAMMS is added to get the final product. The optimisation of experimental conditions of this novel one-pot synthesis is presented, with results indicating that a temperature of 90 C, for the reaction between DFO and GPTMS, and the use of MCM-41 silica are the most convenient conditions. The kinetics of sorption reveals that the iron uptake is relatively fast, around 100 min at pH ¼ 2.5, and from the sorption profile of iron(III), the estimated capacity of the product obtained under optimized conditions was higher than 0.3 mmol g1. The results found in the present research are very promising for application in real biological samples.
Novel DFO-SAM on mesoporous silica for iron sensing. Part I. Synthesis optimization and characterization of the material
NURCHI, VALERIA MARINA;
2014-01-01
Abstract
The synthesis and the physico-chemical characterisation of a novel solid phase, designed for iron(III) sorption, are presented. The solid (indicated in the following as DFO-SAMMS) is made with a hydroxamate siderophore, the deferoxamine (DFO), covalently bound on a self-assembled monolayer on mesoporous silica (SAMMS). The data demonstrate that the DFO molecules are bound to the solid material, grafted on the surface and do not enter the silica pores. A new one-pot synthesis is presented in which DFO is dissolved in DMSO, and left to react with GPTMS with stirring overnight. In the same mixture, SAMMS is added to get the final product. The optimisation of experimental conditions of this novel one-pot synthesis is presented, with results indicating that a temperature of 90 C, for the reaction between DFO and GPTMS, and the use of MCM-41 silica are the most convenient conditions. The kinetics of sorption reveals that the iron uptake is relatively fast, around 100 min at pH ¼ 2.5, and from the sorption profile of iron(III), the estimated capacity of the product obtained under optimized conditions was higher than 0.3 mmol g1. The results found in the present research are very promising for application in real biological samples.File | Dimensione | Formato | |
---|---|---|---|
Novel DFO-SAM on mesoporous silica for iron sensing. Part I. Synthesis optimization and characterization of the material_Analyst_2014.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
958.23 kB
Formato
Adobe PDF
|
958.23 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.