Three mass accumulations of sea urchins from the Miocene of Sardinia show a number of taphonomic features which set them apart from previously described echinoid assemblages from the Cenozoic in which they represent: (1) monotypic assemblages; (2) include very well-preserved remains of either regular or spatangoid echinoids; and (3) originate in deeper water environments. These accumulations are compared using a detailed sedimentological and taphonomic analysis including preservational fabrics, taphonomic signatures, size frequency distributions, density of occurrences and preferred orientations. The possible role of gregarious behaviour contributing to mass occurrences and the specific sedimentary events leading to the excellent preservation are discussed. The interpreted depositional environment of all three deposits is that of a storm-dominated, siliciclastic shelf environment. A phymosomatid assemblage represents rapid burial through obrution of a highly dense, freshly dead community. A Brissopsis-dominated spatangoid assemblage represents a mixed accumulation of parautochthonous and transported skeletons. The third assemblage consisting of regular echinoid spines and rare tests represents a composite tempestite. Differences in the depositional environments are related to their position along onshore offshore gradient with the first two beds originated in a deeper setting than that of the spine accumulation. This study shows that the preservation of assemblages containing complete regular echinoids and spatangoids is higher in deeper water settings than in shallow water environments.

The origin of echinoid shell beds in siliciclastic shelf environments: three examples from the Miocene of Sardinia, Italy

PILLOLA, GIAN LUIGI
2015-01-01

Abstract

Three mass accumulations of sea urchins from the Miocene of Sardinia show a number of taphonomic features which set them apart from previously described echinoid assemblages from the Cenozoic in which they represent: (1) monotypic assemblages; (2) include very well-preserved remains of either regular or spatangoid echinoids; and (3) originate in deeper water environments. These accumulations are compared using a detailed sedimentological and taphonomic analysis including preservational fabrics, taphonomic signatures, size frequency distributions, density of occurrences and preferred orientations. The possible role of gregarious behaviour contributing to mass occurrences and the specific sedimentary events leading to the excellent preservation are discussed. The interpreted depositional environment of all three deposits is that of a storm-dominated, siliciclastic shelf environment. A phymosomatid assemblage represents rapid burial through obrution of a highly dense, freshly dead community. A Brissopsis-dominated spatangoid assemblage represents a mixed accumulation of parautochthonous and transported skeletons. The third assemblage consisting of regular echinoid spines and rare tests represents a composite tempestite. Differences in the depositional environments are related to their position along onshore offshore gradient with the first two beds originated in a deeper setting than that of the spine accumulation. This study shows that the preservation of assemblages containing complete regular echinoids and spatangoids is higher in deeper water settings than in shallow water environments.
2015
Mass occurrences, Miocene, regular echinoids, Sardinia, sedimentology, spatangoids, taphonomy.; Presenze massive, Miocene, echinidi regolari, Sardegna, Sedimentologia, Spatangoidi, Tafonomia.; Accumulations massives, Miocène, échinides reguliers, Sardaigne, sedimentologie, spatangoidés, Taphonomie.
File in questo prodotto:
File Dimensione Formato  
Mancosu et al. 2014.pdf

Solo gestori archivio

Tipologia: versione post-print
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/54261
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact