The chemokine receptor CCR5 is utilized as a critical coreceptor by most primary HIV-1 strains. While the lack of structural information on CCR5 has hampered the rational design of specific inhibitors, mimetics of the chemokines that naturally bind CCR5 can be molecularly engineered. We used a structure-guided approach to design peptide mimetics of the N-loop and β1-strand regions of regulated on activation normal T-cell-expressed and secreted (RANTES)/CCL5, which contain the primary molecular determinants of HIV-1 blockade. Rational modifications were sequentially introduced into the N-loop/β1-strand sequence, leading to the generation of mimetics with potent activity against a broad spectrum of CCR5-specific HIV-1 isolates (IC(50) range: 104-640 nM) but lacking activity against CXCR4-specific HIV-1 isolates. Functional enhancement was initially achieved with the stabilization of the N loop in the β-extended conformation adopted in full-length RANTES, as confirmed by nuclear magnetic resonance (NMR) analysis. However, the most dramatic increase in antiviral potency resulted from the engraftment of an in silico-optimized linker segment designed using de novo structure-prediction algorithms to stabilize the C-terminal α-helix and experimentally validated by NMR. Our mimetics exerted CCR5-antagonistic effects, demonstrating that the antiviral and proinflammatory functions of RANTES can be uncoupled. RANTES peptide mimetics provide new leads for the development of safe and effective HIV-1 entry inhibitors.

Molecular engineering of RANTES peptide mimetics with potent anti-HIV-1 activity

LUSSO, PAOLO;
2011-01-01

Abstract

The chemokine receptor CCR5 is utilized as a critical coreceptor by most primary HIV-1 strains. While the lack of structural information on CCR5 has hampered the rational design of specific inhibitors, mimetics of the chemokines that naturally bind CCR5 can be molecularly engineered. We used a structure-guided approach to design peptide mimetics of the N-loop and β1-strand regions of regulated on activation normal T-cell-expressed and secreted (RANTES)/CCL5, which contain the primary molecular determinants of HIV-1 blockade. Rational modifications were sequentially introduced into the N-loop/β1-strand sequence, leading to the generation of mimetics with potent activity against a broad spectrum of CCR5-specific HIV-1 isolates (IC(50) range: 104-640 nM) but lacking activity against CXCR4-specific HIV-1 isolates. Functional enhancement was initially achieved with the stabilization of the N loop in the β-extended conformation adopted in full-length RANTES, as confirmed by nuclear magnetic resonance (NMR) analysis. However, the most dramatic increase in antiviral potency resulted from the engraftment of an in silico-optimized linker segment designed using de novo structure-prediction algorithms to stabilize the C-terminal α-helix and experimentally validated by NMR. Our mimetics exerted CCR5-antagonistic effects, demonstrating that the antiviral and proinflammatory functions of RANTES can be uncoupled. RANTES peptide mimetics provide new leads for the development of safe and effective HIV-1 entry inhibitors.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/54648
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 11
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 18
social impact