A comparison principle for the subdiffusive p-Laplacian in a possibly non-smooth and unbounded open set is proved. The result requires that the involved sub and supersolution are positive, and the ratio of the former to the latter is bounded. As an application, constrained radial symmetry for overdetermined problems is obtained. More precisely, both Dirichlet and Neumann conditions are prescribed on the boundary of a bounded open set, and the Neumann condition depends on the distance from the origin. The domain of the problem, unknown at the beginning, turns out to be a ball centered at the origin if a positive solution exists. Counterexamples are also discussed.

Comparison principle and constrained radial symmetry for the subdiffusive p-Laplacian

GRECO, ANTONIO
2014-01-01

Abstract

A comparison principle for the subdiffusive p-Laplacian in a possibly non-smooth and unbounded open set is proved. The result requires that the involved sub and supersolution are positive, and the ratio of the former to the latter is bounded. As an application, constrained radial symmetry for overdetermined problems is obtained. More precisely, both Dirichlet and Neumann conditions are prescribed on the boundary of a bounded open set, and the Neumann condition depends on the distance from the origin. The domain of the problem, unknown at the beginning, turns out to be a ball centered at the origin if a positive solution exists. Counterexamples are also discussed.
2014
Subdiffusive p-Laplacian; Comparison principle; Overdetermined problems; Radial symmetry
File in questo prodotto:
File Dimensione Formato  
Greco.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 331.98 kB
Formato Adobe PDF
331.98 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/54854
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact