The Mount Amiata mining district (southern Tuscany, Italy) was, for decades, one of the world’s largest mercury (Hg) producing regions, where mining activity lasted until the 1980s. The Paglia River drains the eastern part of the district and is also the main western tributary of the Tiber River. Recent studies show that, still today, high total Hg contents severely affect the downstream ecosystems of these rivers. In November 2012, a major flood event occurred in the Paglia River basin, which drastically changed the river morphology and, possibly, the Hg concentrations. In the present work, stream sediment was sampled before and after the flood to evaluate possible changes in sediment total Hg concentrations as a consequence of this event. The comparison between pre- and post-flood Hg concentrations shows that Hg content increased up to an order of magnitude after the flood, suggesting that this event triggered Hg mobilization in the basin rather than its dilution.

Effects of the November 2012 flood event on the mobilization of Hg from the mount Amiata Mining district to the sediments of the Paglia river basin

LATTANZI, PIERFRANCO;
2014-01-01

Abstract

The Mount Amiata mining district (southern Tuscany, Italy) was, for decades, one of the world’s largest mercury (Hg) producing regions, where mining activity lasted until the 1980s. The Paglia River drains the eastern part of the district and is also the main western tributary of the Tiber River. Recent studies show that, still today, high total Hg contents severely affect the downstream ecosystems of these rivers. In November 2012, a major flood event occurred in the Paglia River basin, which drastically changed the river morphology and, possibly, the Hg concentrations. In the present work, stream sediment was sampled before and after the flood to evaluate possible changes in sediment total Hg concentrations as a consequence of this event. The comparison between pre- and post-flood Hg concentrations shows that Hg content increased up to an order of magnitude after the flood, suggesting that this event triggered Hg mobilization in the basin rather than its dilution.
2014
Dam; Flood; Mercury; Mining; Mount amiata; Sediment
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/55841
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 24
social impact