Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as “smoothing accretions”). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss fromacapillary filmof solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about δ13C and δ18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substratemorphology. In subaerial speleothems, data showenrichment in heavy isotopes both along the direction ofwater flow and toward the protrusions. The first effect is due toH2OevaporationandCO2 degassing during a gravity-driven flowof water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing duringwatermovement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol fromthe cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water toward different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the iso-depleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.

Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation

FRAU, FRANCO
2015

Abstract

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as “smoothing accretions”). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss fromacapillary filmof solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about δ13C and δ18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substratemorphology. In subaerial speleothems, data showenrichment in heavy isotopes both along the direction ofwater flow and toward the protrusions. The first effect is due toH2OevaporationandCO2 degassing during a gravity-driven flowof water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing duringwatermovement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol fromthe cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water toward different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the iso-depleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.
Speleothems; Coralloids; Carbonate deposition; Caves; Sardinia; Stable carbon and oxygen isotopes
File in questo prodotto:
File Dimensione Formato  
Sedimentary Geology 2015.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 2.63 MB
Formato Adobe PDF
2.63 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/60491
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 27
social impact