In this work, we discuss a recently proposed approach for supervised dimensionality reduction, the Supervised Distance Preserving Projection (SDPP) and, we investigate its applicability to monitoring material’s properties from spectroscopic observations. Motivated by continuity preservation, the SDPP is a linear projection method where the proximity relations between points in the low-dimensional subspace mimic the proximity relations between points in the response space. Such a projection facilitates the design of efficient regression models and it may also uncover useful information for visualisation. An experimental evaluation is conducted to show the performance of the SDPP and compare it with a number of state-of-the-art approaches for unsupervised and supervised dimensionality reduction. The regression step after projection is performed using computationally light models with low maintenance cost like Multiple Linear Regression and Locally Linear Regression with k-NN neighbourhoods. For the evaluation, a benchmark and a full-scale calibration problem are discussed. The case studies pertain the estimation of a number of chemico-physical properties in diesel fuels and in light cycle oils, starting from near-infrared spectra. Based on the experimental results, we found that the SDPP leads to parsimonious projections that can be used to design light and yet accurate estimation models.

Supervised Distance Preserving Projections: Applications in the quantitative analysis of diesel fuels and light cycle oils from NIR spectra

BARATTI, ROBERTO
2015-01-01

Abstract

In this work, we discuss a recently proposed approach for supervised dimensionality reduction, the Supervised Distance Preserving Projection (SDPP) and, we investigate its applicability to monitoring material’s properties from spectroscopic observations. Motivated by continuity preservation, the SDPP is a linear projection method where the proximity relations between points in the low-dimensional subspace mimic the proximity relations between points in the response space. Such a projection facilitates the design of efficient regression models and it may also uncover useful information for visualisation. An experimental evaluation is conducted to show the performance of the SDPP and compare it with a number of state-of-the-art approaches for unsupervised and supervised dimensionality reduction. The regression step after projection is performed using computationally light models with low maintenance cost like Multiple Linear Regression and Locally Linear Regression with k-NN neighbourhoods. For the evaluation, a benchmark and a full-scale calibration problem are discussed. The case studies pertain the estimation of a number of chemico-physical properties in diesel fuels and in light cycle oils, starting from near-infrared spectra. Based on the experimental results, we found that the SDPP leads to parsimonious projections that can be used to design light and yet accurate estimation models.
2015
Supervised Distance Preserving Projection; Machine learning; Spectroscopy; Soft-sensor; Statistical process monitoring; Multivariate quality control
File in questo prodotto:
File Dimensione Formato  
JPCv30p10.pdf

Solo gestori archivio

Tipologia: versione editoriale
Dimensione 5.45 MB
Formato Adobe PDF
5.45 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/60594
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 6
social impact