Is it really necessary to struggle with calculus tools (derivatives, etc.) for finding max- ima, minima, tangents to curves, and inflection points? Apparently not, since Pierre de Fermat was able to solve standard calculus problems almost fifty years before Leibniz and Newton invented the basic tools of calculus.
Scheda prodotto non validato
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Titolo: | Maxima and Minima Without Derivatives? | |
Autori: | ||
Data di pubblicazione: | 2015 | |
Rivista: | ||
Abstract: | Is it really necessary to struggle with calculus tools (derivatives, etc.) for finding max- ima, minima, tangents to curves, and inflection points? Apparently not, since Pierre de Fermat was able to solve standard calculus problems almost fifty years before Leibniz and Newton invented the basic tools of calculus. | |
Handle: | http://hdl.handle.net/11584/60926 | |
Tipologia: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.