In the last years there has been a growing interest on black box approaches to disruption prediction. The drawback of these approaches is that the system could deteriorate its performance once it does not get updated. This could be the case of a disruption predictor for JET, where new plasma configurations might present features completely different from those observed in the experiments used during the training phase. This ‘novelty’ can be incorrectly classified by the system. A novelty detection method, which determines the novelty of the input of the prediction system, can be used to assess the system reliability. This paper presents a support vector machines disruption predictor for JET, wherein multiple plasma diagnostic signals are combined to provide a composite impending disruptionwarning indicator. In a support vector machine the analysis of the decision function value gives useful information about the novelty of an input and, on the reliability of the predictor output, during on-line applications. Results show the suitability of support vector machines both for prediction and novelty detection tasks at JET.

Support Vector Machines for disruption prediction and novelty detection at JET

CANNAS, BARBARA;FANNI, ALESSANDRA;ZEDDA, MARIA KATIUSCIA;
2007-01-01

Abstract

In the last years there has been a growing interest on black box approaches to disruption prediction. The drawback of these approaches is that the system could deteriorate its performance once it does not get updated. This could be the case of a disruption predictor for JET, where new plasma configurations might present features completely different from those observed in the experiments used during the training phase. This ‘novelty’ can be incorrectly classified by the system. A novelty detection method, which determines the novelty of the input of the prediction system, can be used to assess the system reliability. This paper presents a support vector machines disruption predictor for JET, wherein multiple plasma diagnostic signals are combined to provide a composite impending disruptionwarning indicator. In a support vector machine the analysis of the decision function value gives useful information about the novelty of an input and, on the reliability of the predictor output, during on-line applications. Results show the suitability of support vector machines both for prediction and novelty detection tasks at JET.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/61467
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact