Time resolved infrared spectroscopy has been applied to study in situ the evaporation process of a 3-glycidoxypropyltrimethoxysilane hybrid sol by casting a droplet on a ZnSe substrate; the analysis has been performed in the middle-infrared range and in the near-infrared range. The experiment has allowed following the structural changes induced by water evaporation and the formation of ordered structures within the cast film; the CH(2) scissoring bands have been used as a fingerprint for the disorder to order transition of the hybrid. The experiment has been done using both a fresh sol and an aged sol which produce respectively an amorphous material and a crystalline hybrid material. The analysis has shown that the epoxy groups do not react during the evaporation while the silica structure shows only a slight condensation and an increase in open cage-like species. At the end of evaporation the hybrid has a "soft-like" state which allows structural rearrangements to self-order. RI Takahashi, Masahide/C-3326-2009

Structural Evolution during Evaporation of a 3-Glycidoxypropyltrimethoxysilane Film Studied in Situ by Time Resolved Infrared Spectroscopy

FIGUS, CRISTIANA;
2011-01-01

Abstract

Time resolved infrared spectroscopy has been applied to study in situ the evaporation process of a 3-glycidoxypropyltrimethoxysilane hybrid sol by casting a droplet on a ZnSe substrate; the analysis has been performed in the middle-infrared range and in the near-infrared range. The experiment has allowed following the structural changes induced by water evaporation and the formation of ordered structures within the cast film; the CH(2) scissoring bands have been used as a fingerprint for the disorder to order transition of the hybrid. The experiment has been done using both a fresh sol and an aged sol which produce respectively an amorphous material and a crystalline hybrid material. The analysis has shown that the epoxy groups do not react during the evaporation while the silica structure shows only a slight condensation and an increase in open cage-like species. At the end of evaporation the hybrid has a "soft-like" state which allows structural rearrangements to self-order. RI Takahashi, Masahide/C-3326-2009
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/69628
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact