We show how systems of session types can enforce interactions to take bounded time for all typable processes. The type system we propose is based on Lafont’s soft linear logic and is strongly inspired by recent works about session types as intuitionistic linear logic formulas. Our main result is the existence, for every typable process, of a polynomial bound on the length of reduction sequences starting from it and on the size of its reducts.

On Session Types and Polynomial Time

DI GIAMBERARDINO, Paolo
2016

Abstract

We show how systems of session types can enforce interactions to take bounded time for all typable processes. The type system we propose is based on Lafont’s soft linear logic and is strongly inspired by recent works about session types as intuitionistic linear logic formulas. Our main result is the existence, for every typable process, of a polynomial bound on the length of reduction sequences starting from it and on the size of its reducts.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11584/78890
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact