Type 2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Mitochondrial dysfunctions are thought to be the major contributor to the development of various pathologies, including type 1 and type 2 diabetes mellitus. Mitochondrial oxidative stress has been reported in models of both type 1 and type 2 diabetes mellitus and may play a central role in mitochondrial dysfunction. In the present study, we investigated the occurrence of protein alterations, due to the presence of type 2 diabetes, in mitochondria isolated from human peripheral blood mononuclear cells (PBMCs] by matrix-assisted laser desorp- tion/ionization mass spectrometry (MALDI-MS]. PBMCs may be suitable for this investigation because they have insulin receptors that quickly respond to changes in insulin concentration, and in the presence of insulin rapidly increase their rates of glucose utiliza- tion. In the presence of insulin-resistance conditions, such as type 2 diabetes mellitus, this mechanism is altered and the glycation of cytoplasmic as well as mitochondrial proteins may plausibly appear. Therefore, PBMCs may be useful tools to verify modifications or altered expression of mitochondrial proteins. Human mitochondria were obtained from 32 subjects, 16 healthy controls and 16 type 2 diabetic patients. Two different methods for mitochondria isolation and purification were employed and compared. Some proteins have been found to be differently expressed in the two groups of subjects under investigation and can be classified into two sets: i.e. proteins related to ATP synthase [e.g. 6.8kDa mitochondrial proteolipid [MLQ]; ATP-CF6 [m/z 12,597)] and proteins related to cell proliferation and apoptosis [e.g. TIMM9 [m/z 10,378); Bcl-2-like protein 2 (m/z20,742)].

A preliminary fastview of mitochondrial protein profile from healthy and type 2 diabetic subjects

PORCU, SIMONA;
2014-01-01

Abstract

Type 2 diabetes results from the development of insulin resistance and a concomitant impairment of insulin secretion. Mitochondrial dysfunctions are thought to be the major contributor to the development of various pathologies, including type 1 and type 2 diabetes mellitus. Mitochondrial oxidative stress has been reported in models of both type 1 and type 2 diabetes mellitus and may play a central role in mitochondrial dysfunction. In the present study, we investigated the occurrence of protein alterations, due to the presence of type 2 diabetes, in mitochondria isolated from human peripheral blood mononuclear cells (PBMCs] by matrix-assisted laser desorp- tion/ionization mass spectrometry (MALDI-MS]. PBMCs may be suitable for this investigation because they have insulin receptors that quickly respond to changes in insulin concentration, and in the presence of insulin rapidly increase their rates of glucose utiliza- tion. In the presence of insulin-resistance conditions, such as type 2 diabetes mellitus, this mechanism is altered and the glycation of cytoplasmic as well as mitochondrial proteins may plausibly appear. Therefore, PBMCs may be useful tools to verify modifications or altered expression of mitochondrial proteins. Human mitochondria were obtained from 32 subjects, 16 healthy controls and 16 type 2 diabetic patients. Two different methods for mitochondria isolation and purification were employed and compared. Some proteins have been found to be differently expressed in the two groups of subjects under investigation and can be classified into two sets: i.e. proteins related to ATP synthase [e.g. 6.8kDa mitochondrial proteolipid [MLQ]; ATP-CF6 [m/z 12,597)] and proteins related to cell proliferation and apoptosis [e.g. TIMM9 [m/z 10,378); Bcl-2-like protein 2 (m/z20,742)].
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/79523
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact