High-grade gliomas (glioblastomas) are the most common and deadly brain tumors in adults, currently with no satisfactory treatment available. Apart from de novo glioblastoma, it is currently accepted that these malignancies mainly progress from lower grade glial tumors. However, the molecular entities governing the progression of gliomas are poorly understood. Extracellular and membrane proteins are key biomolecules found at the cell-to-cell communication interface and hence are a promising proteome subpopulation that could help understand the development of glioma. Accordingly, the current study aims at identifying new protein markers of human glioma progression. For this purpose, we used glial tumors generated orthotopically with T98G and U373 human glioma cells in nude mice. This setup allowed also to discriminate the protein origin, namely, human (tumor) or mouse (host). Extracellular and membrane proteins were selectively purified using biotinylation followed by streptavidin affinity chromatography. Isolated proteins were digested and then identified and quantified employing 2D-nano-HPLC-MS/MS analysis. A total of 23 and 27 up-regulated extracellular and membrane proteins were identified in the T98G and U373 models, respectively. Approximately two-thirds of these were predominantly produced by the tumor, whereas the remaining proteins appeared to be mainly overexpressed by the host tissue. Following extensive validation, we have focused our attention on sparc-like protein 1. This protein was further investigated using immunohistochemistry in a large collection of human glioma samples of different grades. The results showed that sparc-like protein 1 expression correlates with glioma grade, suggesting the possible role for this protein in the progression of this malignancy.
Sparc-like protein 1 is a new marker of human glioma progression
MURTAS, DANIELA;
2012-01-01
Abstract
High-grade gliomas (glioblastomas) are the most common and deadly brain tumors in adults, currently with no satisfactory treatment available. Apart from de novo glioblastoma, it is currently accepted that these malignancies mainly progress from lower grade glial tumors. However, the molecular entities governing the progression of gliomas are poorly understood. Extracellular and membrane proteins are key biomolecules found at the cell-to-cell communication interface and hence are a promising proteome subpopulation that could help understand the development of glioma. Accordingly, the current study aims at identifying new protein markers of human glioma progression. For this purpose, we used glial tumors generated orthotopically with T98G and U373 human glioma cells in nude mice. This setup allowed also to discriminate the protein origin, namely, human (tumor) or mouse (host). Extracellular and membrane proteins were selectively purified using biotinylation followed by streptavidin affinity chromatography. Isolated proteins were digested and then identified and quantified employing 2D-nano-HPLC-MS/MS analysis. A total of 23 and 27 up-regulated extracellular and membrane proteins were identified in the T98G and U373 models, respectively. Approximately two-thirds of these were predominantly produced by the tumor, whereas the remaining proteins appeared to be mainly overexpressed by the host tissue. Following extensive validation, we have focused our attention on sparc-like protein 1. This protein was further investigated using immunohistochemistry in a large collection of human glioma samples of different grades. The results showed that sparc-like protein 1 expression correlates with glioma grade, suggesting the possible role for this protein in the progression of this malignancy.File | Dimensione | Formato | |
---|---|---|---|
Glioma-Turtoi et al-2012.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.