We report on the magnetic and superconducting properties of LaO0.5F0.5BiS2 by means of zero- and transverse-field (ZF/TF) muon-spin spectroscopy measurements (μSR). Contrary to previous results on iron-based superconductors, measurements in zero field demonstrate the absence of magnetically ordered phases. TF-μSR data give access to the superfluid density, which shows a marked two-dimensional character with a dominant s-wave temperature behavior. The field dependence of the magnetic penetration depth confirms this finding and further suggests the presence of an anisotropic superconducting gap.
s-wave pairing in the optimally doped LaO_{0.5}F_{0.5}BiS_{2} superconductor
SANNA, SAMUELE;
2013-01-01
Abstract
We report on the magnetic and superconducting properties of LaO0.5F0.5BiS2 by means of zero- and transverse-field (ZF/TF) muon-spin spectroscopy measurements (μSR). Contrary to previous results on iron-based superconductors, measurements in zero field demonstrate the absence of magnetically ordered phases. TF-μSR data give access to the superfluid density, which shows a marked two-dimensional character with a dominant s-wave temperature behavior. The field dependence of the magnetic penetration depth confirms this finding and further suggests the presence of an anisotropic superconducting gap.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.