This paper presents a differential synthetic aperture radar (SAR) interferometry (DIFSAR) approach for investigating deformation phenomena on full-resolution DIFSAR interferograms. In particular, our algorithm extends the capability of the small-baseline subset (SBAS) technique that relies on small-baseline DIFSAR interferograms only and is mainly focused on investigating large-scale deformations with spatial resolutions of about 100 x 100 m. The proposed technique is implemented by using two different sets of data generated at low (multilook data) and full (single-look data) spatial resolution, respectively. The former is used to identify and estimate, via the conventional SBAS technique, large spatial scale deformation patterns, topographic errors in the available digital elevation model, and possible atmospheric phase artifacts; the latter allows us to detect, on the full-resolution residual phase components, structures highly coherent over time (buildings, rocks, lava, structures, etc.), as well as their height and displacements. In particular, the estimation of the temporal evolution of these local deformations is easily implemented by applying the singular value decomposition technique. The proposed algorithm has been tested with data acquired by the European Remote Sensing satellites relative to the Campania area (Italy) and validated by using geodetic measurements. RI Sansosti, Eugenio/F-7297-2011

A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms

MANUNTA, MICHELE;
2004-01-01

Abstract

This paper presents a differential synthetic aperture radar (SAR) interferometry (DIFSAR) approach for investigating deformation phenomena on full-resolution DIFSAR interferograms. In particular, our algorithm extends the capability of the small-baseline subset (SBAS) technique that relies on small-baseline DIFSAR interferograms only and is mainly focused on investigating large-scale deformations with spatial resolutions of about 100 x 100 m. The proposed technique is implemented by using two different sets of data generated at low (multilook data) and full (single-look data) spatial resolution, respectively. The former is used to identify and estimate, via the conventional SBAS technique, large spatial scale deformation patterns, topographic errors in the available digital elevation model, and possible atmospheric phase artifacts; the latter allows us to detect, on the full-resolution residual phase components, structures highly coherent over time (buildings, rocks, lava, structures, etc.), as well as their height and displacements. In particular, the estimation of the temporal evolution of these local deformations is easily implemented by applying the singular value decomposition technique. The proposed algorithm has been tested with data acquired by the European Remote Sensing satellites relative to the Campania area (Italy) and validated by using geodetic measurements. RI Sansosti, Eugenio/F-7297-2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/90530
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 856
  • ???jsp.display-item.citation.isi??? 719
social impact