In this work we study the morphology and electronic properties of Bi2S3 nanostructures by means of atomistic simulations. We focus on elongated nanoribbons that are the building blocks of the corresponding crystal structures, and we study saturated and unsaturated nanocrystals of finite size in comparison with one-dimensional infinite ones. By means of (time-dependent) density functional theory calculations we provide evidence that the optical gap can be tuned through quantum confinement with sizable effects for ribbons smaller than three nanometers. By a comparison with Sb2S3, we conclude that Bi2S3 nanostructures have similar tunability of the bandgap and a better tendency of passivating defects at the (010) surfaces through local reconstructions.
Electronic properties and quantum confinement in Bi2S3 ribbon-like nanostructures
CALZIA, VASCO;MALLOCI, GIULIANO;BONGIOVANNI, GIOVANNI LUIGI CARLO;
2013-01-01
Abstract
In this work we study the morphology and electronic properties of Bi2S3 nanostructures by means of atomistic simulations. We focus on elongated nanoribbons that are the building blocks of the corresponding crystal structures, and we study saturated and unsaturated nanocrystals of finite size in comparison with one-dimensional infinite ones. By means of (time-dependent) density functional theory calculations we provide evidence that the optical gap can be tuned through quantum confinement with sizable effects for ribbons smaller than three nanometers. By a comparison with Sb2S3, we conclude that Bi2S3 nanostructures have similar tunability of the bandgap and a better tendency of passivating defects at the (010) surfaces through local reconstructions.File | Dimensione | Formato | |
---|---|---|---|
jp405740b.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
2.05 MB
Formato
Adobe PDF
|
2.05 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.