In order to appropriately model the strong quantum computational logic of Cattaneo et al., we introduce an expansion of p′ quasi-MV al- gebras by lattice operations and a G¨odel-like implication. We call the resulting algebras G¨odel quantum computational algebras, and we show that every such algebra arises as a pair algebra over a Heyting-Wajsberg algebra. After proving a standard completeness theorem, we prove that G¨odel quantum computational algebras form a discriminator variety and we point out some consequence threoef

A discriminator variety of Gödel algebras with operators arising in quantum computation

GIUNTINI, ROBERTO;FREYTES, HECTOR CARLOS;LEDDA, ANTONIO;PAOLI, FRANCESCO
2009-01-01

Abstract

In order to appropriately model the strong quantum computational logic of Cattaneo et al., we introduce an expansion of p′ quasi-MV al- gebras by lattice operations and a G¨odel-like implication. We call the resulting algebras G¨odel quantum computational algebras, and we show that every such algebra arises as a pair algebra over a Heyting-Wajsberg algebra. After proving a standard completeness theorem, we prove that G¨odel quantum computational algebras form a discriminator variety and we point out some consequence threoef
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/91686
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact