We give a complete set of orthogonal invariants for tetrahedra in G 2(R8). As a consequence, we characterise regular tetrahedra and we exhibit the existence regions of these objects in comparison with the angular invariants associated to them.

Congruence theorem for 4-tuples in the Grassmann manifold G2(R^8)

MASALA, GIOVANNI BATISTA
2001

Abstract

We give a complete set of orthogonal invariants for tetrahedra in G 2(R8). As a consequence, we characterise regular tetrahedra and we exhibit the existence regions of these objects in comparison with the angular invariants associated to them.
File in questo prodotto:
File Dimensione Formato  
J_Geom.pdf

Solo gestori archivio

Dimensione 115.6 kB
Formato Adobe PDF
115.6 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/9330
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact