We investigate blow-up solutions of the equation \Delta u = u^p + g(u) in a bounded smooth domain \Omega­. If p > 1 and if g satisfies appropriate growth conditions (compared with the growth of t^p) as t goes to infinity we find optimal asymptotic estimates of the solution u(x) in terms of the distance of x from the boundary \partial \Omega.

Higher order boundary estimates for blow-up solutions of elliptic equations

ANEDDA, CLAUDIA;
2006-01-01

Abstract

We investigate blow-up solutions of the equation \Delta u = u^p + g(u) in a bounded smooth domain \Omega­. If p > 1 and if g satisfies appropriate growth conditions (compared with the growth of t^p) as t goes to infinity we find optimal asymptotic estimates of the solution u(x) in terms of the distance of x from the boundary \partial \Omega.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/94495
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 11
social impact