We investigate the Dvali–Gabadadze–Porrati (DGP) model corrected by higher curvature brane terms. We show that these corrections have a dramatic impact on the spectrum of the model at the linearized level. Owing to the presence of higher derivatives in the field equations very massive ghost excitations with mass of order of Planck mass are generated in the ordinary branch of the model. These excitations describe an instability of Minkowski vacuum with time-scale of order of the Hubble time H−1 0 . At large distances these tachyonic excitations are expected to decouple from brane-localized matter. Our modified DGP model represents therefore a very promising framework for solving of the cosmological constant problem, in which Planck scale physics is responsible for the elementary excitations driving the accelerated expansion of the universe, but the time-scale of the instability is settled by gravitational physics at large scales.

Higher curvature brane corrections to the DGP model

CADONI, MARIANO;PANI, PAOLO
2009-01-01

Abstract

We investigate the Dvali–Gabadadze–Porrati (DGP) model corrected by higher curvature brane terms. We show that these corrections have a dramatic impact on the spectrum of the model at the linearized level. Owing to the presence of higher derivatives in the field equations very massive ghost excitations with mass of order of Planck mass are generated in the ordinary branch of the model. These excitations describe an instability of Minkowski vacuum with time-scale of order of the Hubble time H−1 0 . At large distances these tachyonic excitations are expected to decouple from brane-localized matter. Our modified DGP model represents therefore a very promising framework for solving of the cosmological constant problem, in which Planck scale physics is responsible for the elementary excitations driving the accelerated expansion of the universe, but the time-scale of the instability is settled by gravitational physics at large scales.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/94885
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact