This paper illustrates a cooperative multiagent learning approach devised to perform classification or prediction tasks. The resulting system is composed by a population of agents that cooperate and interact in accordance with generic requirements imposed by the adoption of evolutionary computation strategies. As a case study, we consider the typical bioinformatics problem of predicting protein secondary structure.

Protein Secondary Structure Prediction through a Cooperative MultiAgent Learning Approach

ADDIS, ANDREA;ARMANO, GIULIANO;MASCIA, FRANCESCO;VARGIU, ELOISA
2007-01-01

Abstract

This paper illustrates a cooperative multiagent learning approach devised to perform classification or prediction tasks. The resulting system is composed by a population of agents that cooperate and interact in accordance with generic requirements imposed by the adoption of evolutionary computation strategies. As a case study, we consider the typical bioinformatics problem of predicting protein secondary structure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/95433
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact