Opioid receptors located in the ventral tegmental area are known to regulate dopamine (DA) release from mesocortical afferents to medial prefrontal cortex (mPFC) but little is known on whether in this cortical region activation of opioid receptors affect DA receptor signaling. In the present study we show that in mouse mPFC concomitant activation of either δ- or μ-opioid receptors, but not κ-opioid receptors, potentiated DA D1-like receptor-induced stimulation of adenylyl cyclase activity through a G protein βγ subunit-dependent mechanism. In tissue slices of mPFC, the combined addition of the opioid agonist leu-enkephalin and the DA D1-like receptor agonist SKF 81297 produced more than additive increase in the phosphorylation state of AMPA and NMDA receptor subunits GluR1 and NR1, respectively. Moreover, in primary cultures of mouse frontal cortex neurons, DA D1-like receptor-induced Ser133 phosphorylation of the transcription factor cyclic AMP responsive element binding protein was potentiated by concurrent stimulation of opioid receptors. Double immunofluorescence analysis of cultured cortical cells indicated that a large percentage of DA D1 receptor positive cells expressed either δ- or μ-opioid receptor immunoreactivity. These data indicate that in mouse mPFC activation of μ- and δ-opioid receptors enhances DA D1-like receptor signaling likely through converging regulatory inputs on βγ-stimulated adenylyl cyclase isoforms. This previously unrecognized synergistic interaction may selectively affect DA D1 transmission at specific postsynaptic sites where the receptors are co-localized and may play a role in prefrontal DA D1 regulation of opioid addiction.
Potentiation of dopamine D1-like receptor signaling by concomitant activation of δ- And μ-opioid receptors in mouse medial prefrontal cortex
OLIANAS, MARIA CONCETTA;DEDONI, SIMONA;ONALI, PIER LUIGI
2012-01-01
Abstract
Opioid receptors located in the ventral tegmental area are known to regulate dopamine (DA) release from mesocortical afferents to medial prefrontal cortex (mPFC) but little is known on whether in this cortical region activation of opioid receptors affect DA receptor signaling. In the present study we show that in mouse mPFC concomitant activation of either δ- or μ-opioid receptors, but not κ-opioid receptors, potentiated DA D1-like receptor-induced stimulation of adenylyl cyclase activity through a G protein βγ subunit-dependent mechanism. In tissue slices of mPFC, the combined addition of the opioid agonist leu-enkephalin and the DA D1-like receptor agonist SKF 81297 produced more than additive increase in the phosphorylation state of AMPA and NMDA receptor subunits GluR1 and NR1, respectively. Moreover, in primary cultures of mouse frontal cortex neurons, DA D1-like receptor-induced Ser133 phosphorylation of the transcription factor cyclic AMP responsive element binding protein was potentiated by concurrent stimulation of opioid receptors. Double immunofluorescence analysis of cultured cortical cells indicated that a large percentage of DA D1 receptor positive cells expressed either δ- or μ-opioid receptor immunoreactivity. These data indicate that in mouse mPFC activation of μ- and δ-opioid receptors enhances DA D1-like receptor signaling likely through converging regulatory inputs on βγ-stimulated adenylyl cyclase isoforms. This previously unrecognized synergistic interaction may selectively affect DA D1 transmission at specific postsynaptic sites where the receptors are co-localized and may play a role in prefrontal DA D1 regulation of opioid addiction.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.