Samples of particulate matter (PM) collected in the city of Milan during wintertime were analyzed by X-ray photoelectron spectroscopy (XPS), thermal optical transmittance (TOT), ionic chromatography (IC) and X-ray fluorescence (XRF) in order to compare quantitative bulk analysis and surface analysis. In particular, the analysis of surface carbon is here presented following a new approach for the C1s curve fitting aiming this work to prove the capability of XPS to discriminate among elemental carbon (EC) and organic carbon (OC) and to quantify the carbon-based compounds that might be present in the PM. Since surface of urban PM is found to be rich in carbon it is important to be able to distinguish between the different species. XPS results indicate that aromatic and aliphatic species are adsorbed on the PM surface. Higher concentrations of (EC) are present in the bulk. Also nitrogen and sulfur were detected on the surfaces and a qualitative and quantitative analysis is provided. Surface concentration of sulfate ion is equal to that found by bulk analysis; moreover surface analysis shows an additional signal due to organic sulfur not detectable by the other methods. Surface appears to be also enriched in nitrogen.

Surface chemical characterization of PM10 samples by XPS

ATZEI, DAVIDE;FANTAUZZI, MARZIA;ROSSI, ANTONELLA;
2014-01-01

Abstract

Samples of particulate matter (PM) collected in the city of Milan during wintertime were analyzed by X-ray photoelectron spectroscopy (XPS), thermal optical transmittance (TOT), ionic chromatography (IC) and X-ray fluorescence (XRF) in order to compare quantitative bulk analysis and surface analysis. In particular, the analysis of surface carbon is here presented following a new approach for the C1s curve fitting aiming this work to prove the capability of XPS to discriminate among elemental carbon (EC) and organic carbon (OC) and to quantify the carbon-based compounds that might be present in the PM. Since surface of urban PM is found to be rich in carbon it is important to be able to distinguish between the different species. XPS results indicate that aromatic and aliphatic species are adsorbed on the PM surface. Higher concentrations of (EC) are present in the bulk. Also nitrogen and sulfur were detected on the surfaces and a qualitative and quantitative analysis is provided. Surface concentration of sulfate ion is equal to that found by bulk analysis; moreover surface analysis shows an additional signal due to organic sulfur not detectable by the other methods. Surface appears to be also enriched in nitrogen.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/96550
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 44
social impact