An algebraic setting for the validity of Pavelka style completeness for some natural expansions of Łukasiewicz logic by new connectives and rational constants is given. This algebraic approach is based on the fact that the standard MValgebra on the real segment [0, 1] is an injective MV-algebra. In particular the logics associated with MV-algebras with product and with divisible MV-algebras are considered.

Pavelka-style completeness in expansions of Łukasiewicz Logic

FREYTES, HECTOR CARLOS
2008-01-01

Abstract

An algebraic setting for the validity of Pavelka style completeness for some natural expansions of Łukasiewicz logic by new connectives and rational constants is given. This algebraic approach is based on the fact that the standard MValgebra on the real segment [0, 1] is an injective MV-algebra. In particular the logics associated with MV-algebras with product and with divisible MV-algebras are considered.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/96690
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact