Ethanol excites dopamine (DA) neurons in the posterior ventral tegmental area (pVTA). This effect is responsible for ethanol's motivational properties and may contribute to alcoholism. Evidence indicates that catalase-mediated conversion of ethanol into acetaldehyde in pVTA plays a critical role in this effect. Acetaldehyde, in the presence of DA, condensates with it to generate salsolinol. Salsolinol, when administered in pVTA, excites pVTA DA cells, elicits DA transmission in nucleus accumbens and sustains its self-administration in pVTA. Here we show, by using ex vivo electrophysiology, that ethanol and acetaldehyde, but not salsolinol, failed to stimulate pVTA DA cell activity in mice administered α-methyl-p-tyrosine, a DA biosynthesis inhibitor that reduces somatodendritic DA release. This effect was specific for ethanol and acetaldehyde since morphine, similarly to salsolinol, was able to excite pVTA DA cells in α-methyl-p-tyrosine-treated mice. However, when DA was bath applied in slices from α-methyl-p-tyrosine-treated mice, ethanol-induced excitation of pVTA DA neurons was restored. This effect requires ethanol oxidation into acetaldehyde given that, when H2 O2 -catalase system was impaired by either 3-amino-1,2,4-triazole or in vivo administration of α-lipoic acid, ethanol did not enhance DA cell activity. Finally, high performance liquid chromatography-tandem mass spectrometry analysis of bath medium detected salsolinol only after co-application of ethanol and DA in α-methyl-p-tyrosine-treated mice. These results demonstrate the relationship between ethanol and salsolinol effects on pVTA DA neurons, help to untangle the mechanism(s) of action of ethanol in this area and contribute to an exciting research avenue prosperous of theoretical and practical consequences.

Key role of salsolinol in ethanol actions on dopamine neuronal activity of the posterior ventral tegmental area

MELIS, MIRIAM;CARBONI, EZIO;CABONI, PIERLUIGI;ACQUAS, ELIO MARIA GIOACHINO
2015-01-01

Abstract

Ethanol excites dopamine (DA) neurons in the posterior ventral tegmental area (pVTA). This effect is responsible for ethanol's motivational properties and may contribute to alcoholism. Evidence indicates that catalase-mediated conversion of ethanol into acetaldehyde in pVTA plays a critical role in this effect. Acetaldehyde, in the presence of DA, condensates with it to generate salsolinol. Salsolinol, when administered in pVTA, excites pVTA DA cells, elicits DA transmission in nucleus accumbens and sustains its self-administration in pVTA. Here we show, by using ex vivo electrophysiology, that ethanol and acetaldehyde, but not salsolinol, failed to stimulate pVTA DA cell activity in mice administered α-methyl-p-tyrosine, a DA biosynthesis inhibitor that reduces somatodendritic DA release. This effect was specific for ethanol and acetaldehyde since morphine, similarly to salsolinol, was able to excite pVTA DA cells in α-methyl-p-tyrosine-treated mice. However, when DA was bath applied in slices from α-methyl-p-tyrosine-treated mice, ethanol-induced excitation of pVTA DA neurons was restored. This effect requires ethanol oxidation into acetaldehyde given that, when H2 O2 -catalase system was impaired by either 3-amino-1,2,4-triazole or in vivo administration of α-lipoic acid, ethanol did not enhance DA cell activity. Finally, high performance liquid chromatography-tandem mass spectrometry analysis of bath medium detected salsolinol only after co-application of ethanol and DA in α-methyl-p-tyrosine-treated mice. These results demonstrate the relationship between ethanol and salsolinol effects on pVTA DA neurons, help to untangle the mechanism(s) of action of ethanol in this area and contribute to an exciting research avenue prosperous of theoretical and practical consequences.
2015
Ethanol; Salsolinol; Acetaldehyde; Dopamine; pVTA; Catalase
File in questo prodotto:
File Dimensione Formato  
A_Melis et al., 2013 early view.pdf

Solo gestori archivio

Tipologia: versione post-print (AAM)
Dimensione 1.07 MB
Formato Adobe PDF
1.07 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
CarboniE_KeyRole_VoR.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 706.31 kB
Formato Adobe PDF
706.31 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/96907
Citazioni
  • ???jsp.display-item.citation.pmc??? 22
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 35
social impact