We investigate maxima and minima of some functionals associated with solutions to Dirichlet problems for elliptic equations. We prove existence results and, under suitable restrictions on the data, we show that any maximal configuration satisfies a special system of two equations. Next, we use the moving plane method to find symmetry results for solutions of a system. We apply these results to discuss symmetry for the maximal configurations of the previous problem.

Symmetry of solutions to optimization problems related to partial differential equations

CUCCU, FABRIZIO;
2006-01-01

Abstract

We investigate maxima and minima of some functionals associated with solutions to Dirichlet problems for elliptic equations. We prove existence results and, under suitable restrictions on the data, we show that any maximal configuration satisfies a special system of two equations. Next, we use the moving plane method to find symmetry results for solutions of a system. We apply these results to discuss symmetry for the maximal configurations of the previous problem.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/97368
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact