The bacterial species Streptococcus mutans is known as the main cause of dental caries in humans. Therefore, much effort has focused on preventing oral colonization by this strain or clearing it from oral tissues. The oral cavity is colonized by several bacterial species that constitute the commensal oral flora, but none of these is able to interfere with the cariogenic properties of S. mutans. This paper describes the interfering ability of some nutritionally variant streptococcal strains (NVS) with S. mutans adhesion to glass surfaces and also to hydroxylapatite. In mixed cultures, NVS induce a complete inhibition of S. mutans microcolony formation on cover glass slides. NVS can also block the adherence of radiolabeled S. mutans to hydroxylapatite in the presence of both saliva and sucrose. The analysis of the action mechanism of NVS demonstrated that NVS are more hydrophobic than S. mutans and adhere tightly to hard surfaces. In addition, a cell-free culture filtrate of NVS was also able to interfere with S. mutans adhesion to hydroxylapatite. Since NVS are known to secrete some important bacteriolytic enzymes, we conclude that NVS can be a natural antagonist to the cariogenic properties of S. mutans.

Nutritionally variant Streptococci interfere with Streptococcus mutans adhesion properties and biofilm formation

ANGIUS, FABRIZIO;MADEDDU, MARIA ANTONIETTA;POMPEI, RAFFAELLO
2015-01-01

Abstract

The bacterial species Streptococcus mutans is known as the main cause of dental caries in humans. Therefore, much effort has focused on preventing oral colonization by this strain or clearing it from oral tissues. The oral cavity is colonized by several bacterial species that constitute the commensal oral flora, but none of these is able to interfere with the cariogenic properties of S. mutans. This paper describes the interfering ability of some nutritionally variant streptococcal strains (NVS) with S. mutans adhesion to glass surfaces and also to hydroxylapatite. In mixed cultures, NVS induce a complete inhibition of S. mutans microcolony formation on cover glass slides. NVS can also block the adherence of radiolabeled S. mutans to hydroxylapatite in the presence of both saliva and sucrose. The analysis of the action mechanism of NVS demonstrated that NVS are more hydrophobic than S. mutans and adhere tightly to hard surfaces. In addition, a cell-free culture filtrate of NVS was also able to interfere with S. mutans adhesion to hydroxylapatite. Since NVS are known to secrete some important bacteriolytic enzymes, we conclude that NVS can be a natural antagonist to the cariogenic properties of S. mutans.
File in questo prodotto:
File Dimensione Formato  
2015-NewMicro.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 1.13 MB
Formato Adobe PDF
1.13 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/97654
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact