We find a second order approximation of the boundary blow-up solution of the equation \Delta u = e^{u |u|^{\beta -1}}, with \beta > 0, in a bounded smooth domain \Omega \subset R^N. Furthermore, we consider the equation \Delta u = e^{u+e^u}. In both cases we underline the effect of the geometry of the domain in the asymptotic expansion of the solutions near the boundary \partial \Omega­.

Second-order estimates for boundary blow-up solutions of special elliptic equations

ANEDDA, CLAUDIA;
2006-01-01

Abstract

We find a second order approximation of the boundary blow-up solution of the equation \Delta u = e^{u |u|^{\beta -1}}, with \beta > 0, in a bounded smooth domain \Omega \subset R^N. Furthermore, we consider the equation \Delta u = e^{u+e^u}. In both cases we underline the effect of the geometry of the domain in the asymptotic expansion of the solutions near the boundary \partial \Omega­.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/97702
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact