Due to the strict relation between protein function and structure, the prediction of protein 3D-structure has become one of the most important tasks in bioinformatics and proteomics. In fact, notwithstanding the increase of experimental data on protein structures available in public databases, the gap between known sequences and known tertiary structures is constantly increasing. The need for automatic methods has brought the development of several prediction and modelling tools, but a general methodology able to solve the problem has not yet been devised, and most methodologies concentrate on the simplified task of predicting secondary structure.

A hybrid genetic-neural system for predicting protein secondary structure

ARMANO, GIULIANO;MANCOSU G;ORRO, ALESSANDRO;SABA, MASSIMILIANO;VARGIU, ELOISA
2005-01-01

Abstract

Due to the strict relation between protein function and structure, the prediction of protein 3D-structure has become one of the most important tasks in bioinformatics and proteomics. In fact, notwithstanding the increase of experimental data on protein structures available in public databases, the gap between known sequences and known tertiary structures is constantly increasing. The need for automatic methods has brought the development of several prediction and modelling tools, but a general methodology able to solve the problem has not yet been devised, and most methodologies concentrate on the simplified task of predicting secondary structure.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/97718
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact