In this paper, different pattern recognition techniques have been tested in order to implement an automatic tool for disruption classification in a tokamak experiment. The methods considered refer to clustering and classification techniques. In particular, the investigated clustering techniques are self-organizing maps and K-means, while the classification techniques are multi-layer perceptrons, support vector machines, and k- nearest neighbours. Training and testing data have been collected selecting suitable diagnostic signals recorded over 4 years of EFDA-JET experiments. Multi-layer perceptron classifiers exhibited the best performance in classifying mode lock, density limit/high radiated power, H-mode/L-mode transition and internal transport barrier plasma disruptions. This classification performance can be increased using multiple classifiers. In particular the outputs of five multi-layer perceptron classifiers have been combined using multiple classifier techniques in order to obtain a more robust and reliable classification tool, that is presently implemented at JET.
Automatic disruption classification at JET: comparison of different pattern recognition techniques
CANNAS, BARBARA;CAU, FRANCESCA;FANNI, ALESSANDRA;ZEDDA, MARIA KATIUSCIA
2006-01-01
Abstract
In this paper, different pattern recognition techniques have been tested in order to implement an automatic tool for disruption classification in a tokamak experiment. The methods considered refer to clustering and classification techniques. In particular, the investigated clustering techniques are self-organizing maps and K-means, while the classification techniques are multi-layer perceptrons, support vector machines, and k- nearest neighbours. Training and testing data have been collected selecting suitable diagnostic signals recorded over 4 years of EFDA-JET experiments. Multi-layer perceptron classifiers exhibited the best performance in classifying mode lock, density limit/high radiated power, H-mode/L-mode transition and internal transport barrier plasma disruptions. This classification performance can be increased using multiple classifiers. In particular the outputs of five multi-layer perceptron classifiers have been combined using multiple classifier techniques in order to obtain a more robust and reliable classification tool, that is presently implemented at JET.File | Dimensione | Formato | |
---|---|---|---|
NF2006.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
327.22 kB
Formato
Adobe PDF
|
327.22 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.