Let E → M be a holomorphic vector bundle over a compact Kähler manifold (M,ω). We prove that if E admits a ω-balanced metric (in X. Wang’s terminology (Wang, 2005 [3])) then it is unique. This result together with Biliotti and Ghigi (2008) [14] implies the existence and uniqueness of ω-balanced metrics of certain direct sums of irreducible homogeneous vector bundles over rational homogeneous varieties. We finally apply our result to show the rigidity of ω-balanced Kähler maps into Grassmannians.

Uniqueness of balanced metrics on complex vector bundles.

LOI, ANDREA;MOSSA, ROBERTO
2011-01-01

Abstract

Let E → M be a holomorphic vector bundle over a compact Kähler manifold (M,ω). We prove that if E admits a ω-balanced metric (in X. Wang’s terminology (Wang, 2005 [3])) then it is unique. This result together with Biliotti and Ghigi (2008) [14] implies the existence and uniqueness of ω-balanced metrics of certain direct sums of irreducible homogeneous vector bundles over rational homogeneous varieties. We finally apply our result to show the rigidity of ω-balanced Kähler maps into Grassmannians.
File in questo prodotto:
File Dimensione Formato  
rivista.pdf

Solo gestori archivio

Tipologia: versione editoriale (VoR)
Dimensione 389.38 kB
Formato Adobe PDF
389.38 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11584/98194
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact