Let E → M be a holomorphic vector bundle over a compact Kähler manifold (M,ω). We prove that if E admits a ω-balanced metric (in X. Wang’s terminology (Wang, 2005 [3])) then it is unique. This result together with Biliotti and Ghigi (2008) [14] implies the existence and uniqueness of ω-balanced metrics of certain direct sums of irreducible homogeneous vector bundles over rational homogeneous varieties. We finally apply our result to show the rigidity of ω-balanced Kähler maps into Grassmannians.
Uniqueness of balanced metrics on complex vector bundles.
LOI, ANDREA;MOSSA, ROBERTO
2011-01-01
Abstract
Let E → M be a holomorphic vector bundle over a compact Kähler manifold (M,ω). We prove that if E admits a ω-balanced metric (in X. Wang’s terminology (Wang, 2005 [3])) then it is unique. This result together with Biliotti and Ghigi (2008) [14] implies the existence and uniqueness of ω-balanced metrics of certain direct sums of irreducible homogeneous vector bundles over rational homogeneous varieties. We finally apply our result to show the rigidity of ω-balanced Kähler maps into Grassmannians.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
rivista.pdf
Solo gestori archivio
Tipologia:
versione editoriale (VoR)
Dimensione
389.38 kB
Formato
Adobe PDF
|
389.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.